Variational Inference¤
VI
¤
Class to handle (Generalized) Variational Inferece.
Arguments:
loss
: A callable that returns a (differentiable) loss. Needs to take (parameters, data) as input and return a scalar tensor.prior
: The prior distribution.posterior_estimator
: The variational distribution that approximates the (generalised) posterior.w
: The weight of the regularisation loss in the total loss.initialize_estimator_to_prior
: Whether to fit the posterior estimator to the prior before training.initialization_lr
: The learning rate to use for the initialization.gradient_clipping_norm
: The norm to which the gradients are clipped.optimizer
: The optimizer to use for training.n_samples_per_epoch
: The number of samples to draw from the variational distribution per epoch.n_samples_regularisation
: The number of samples used to evaluate the regularisation loss.diff_mode
: The differentiation mode to use. Can be either 'reverse' or 'forward'.gradient_estimation_method
: The method to use for estimating the gradients of the loss. Can be either 'pathwise' or 'score'.jacobian_chunk_size
: The number of rows computed at a time for the model Jacobian. Set to None to compute the full Jacobian at once.device
: The device to use for training.progress_bar
: Whether to display a progress bar during training.progress_info
: Whether to display loss data during training.log_tensorboard
: Whether to log tensorboard data.tensorboard_log_dir
: The directory to log tensorboard data to.
Source code in blackbirds/infer/vi.py
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
|
initialize_estimator(max_epochs_without_improvement=50, atol=0.01)
¤
Initialization step where the estimator is fitted to just the prior.
Source code in blackbirds/infer/vi.py
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
|
run(data, n_epochs, max_epochs_without_improvement=20)
¤
Runs the calibrator for {n_epochs} epochs. Stops if the loss does not improve for {max_epochs_without_improvement} epochs.
Arguments:
data
: The observed data to calibrate against. It must be given as a list of tensors that matches the output of the model.n_epochs
: The number of epochs to run the calibrator for.max_epochs_without_improvement
: The number of epochs without improvement after which the calibrator stops.
Source code in blackbirds/infer/vi.py
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
|
step(data)
¤
Performs one training step.
Source code in blackbirds/infer/vi.py
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
|
compute_and_differentiate_loss(loss_fn, posterior_estimator, n_samples, observed_outputs, diff_mode='reverse', gradient_estimation_method='pathwise', jacobian_chunk_size=None, device='cpu')
¤
Computes and differentiates the loss according to the chosen gradient estimation method and automatic differentiation mechanism. Arguments:
loss_fn
: loss functionposterior_estimator
: posterior estimator, must implement a sample and a log_prob methodn_samples
: number of samplesobserved_outputs
: observed outputsdiff_mode
: differentiation mode can be "reverse" or "forward"gradient_estimation_method
: gradient estimation method can be "pathwise" or "score"jacobian_chunk_size
: chunk size for the Jacobian computation (set None to get maximum chunk size)device
: device to use for the computation
Source code in blackbirds/infer/vi.py
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
|
compute_and_differentiate_loss_score(loss_fn, posterior_estimator, n_samples, observed_outputs, device='cpu')
¤
Computes the loss and the jacobian of the loss for each sample using a differentiable simulator. That is, we compute
by performing the score gradient
The jacobian is computed using the forward or reverse mode differentiation and the computation is parallelized across the available devices.
Arguments:
loss_fn
: loss functionposterior_estimator
: posterior estimator, must implement a sample and a log_prob methodn_samples
: number of samplesobserved_outputs
: observed outputsdevice
: device to use for the computation
Source code in blackbirds/infer/vi.py
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
|
compute_loss_and_jacobian_pathwise(loss_fn, posterior_estimator, n_samples, observed_outputs, diff_mode='reverse', jacobian_chunk_size=None, device='cpu')
¤
Computes the loss and the jacobian of the loss for each sample using a differentiable simulator. That is, we compute
by performing the pathwise gradient (reparameterization trick),
The jacobian is computed using the forward or reverse mode differentiation and the computation is parallelized across the available devices.
Arguments:
loss_fn
: loss functionposterior_estimator
: Object that implements thesample
method computing a parameter and its log_probn_samples
: number of samplesobserved_outputs
: observed outputsdiff_mode
: differentiation mode can be "reverse" or "forward"jacobian_chunk_size
: chunk size for the Jacobian computation (set None to get maximum chunk size)device
: device to use for the computation
Source code in blackbirds/infer/vi.py
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
compute_regularisation_loss(posterior_estimator, prior, n_samples)
¤
Estimates the KL divergence between the posterior and the prior using n_samples through Monte Carlo using
Arguments:
posterior_estimator
: The posterior distribution.prior
: The prior distribution.n_samples
: The number of samples to use for the Monte Carlo estimate.
Example
import torch
from blackbirds.regularisation import compute_regularisation
# define two normal distributions
dist1 = torch.distributions.Normal(0, 1)
dist2 = torch.distributions.Normal(0, 1)
compute_regularisation(dist1, dist2, 1000)
# tensor(0.)
dist1 = torch.distributions.Normal(0, 1)
dist2 = torch.distributions.Normal(1, 1)
compute_regularisation(dist1, dist2, 1000)
# tensor(0.5)
Source code in blackbirds/infer/vi.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|