Bases: Module
A multivariate Gaussian distribution with trainable mean and covariance
matrix.
Arguments:
mu
: list of floats, the initial mean of the distribution.
sigma
: float, the initial standard deviation of the distribution.
The covariance matrix is initialized as a diagonal matrix with this
value on the diagonal.
device
: str, the device to use for the distribution.
Source code in blackbirds/posterior_estimators.py
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 | class TrainableGaussian(torch.nn.Module):
"""
A multivariate Gaussian distribution with trainable mean and covariance
matrix.
**Arguments:**
- `mu`: list of floats, the initial mean of the distribution.
- `sigma`: float, the initial standard deviation of the distribution.
The covariance matrix is initialized as a diagonal matrix with this
value on the diagonal.
- `device`: str, the device to use for the distribution.
"""
def __init__(self, mu=[0.0], sigma=1.0, device="cpu"):
super().__init__()
self.mu = torch.nn.Parameter(torch.tensor(mu, device=device))
self.sigma = sigma * torch.eye(len(mu), device=device)
self.sigma = torch.nn.Parameter(self.sigma)
def clamp_sigma(self):
sigma = self.sigma.clone()
mask = torch.eye(len(self.mu), device=self.sigma.device).bool()
sigma[mask] = torch.clamp(self.sigma[mask], min=1e-3)
return sigma
def log_prob(self, x):
sigma = self.clamp_sigma()
return torch.distributions.MultivariateNormal(self.mu, sigma).log_prob(x)
def sample(self, n):
sigma = self.clamp_sigma()
dist = torch.distributions.MultivariateNormal(self.mu, sigma)
sample = dist.rsample((n,))
return sample, self.log_prob(sample.detach())
def __call__(self, x=None):
return self
|